Compatible partial orders in unary algebras

Szilvia Szilágyi
Department of Analysis, University of Miskolc
3515 MISKOLC-EGYETEMVÁROS, Hungary
matszisz@uni-miskolc.hu

1. Introduction

The notion of partial order is well-known in algebra for long time. An important result in the theory of partial orders is the Szpilrajn theorem [3] stating that each partial order can be extended to a linear order. As a consequence we obtain that the maximal partial orders on A are exactly the linear orders of A. Let $f: A \longrightarrow A$ be a unary operation. The compatible partial orders of (A, f) are the partial orders with the following property: $x \leq_{r} y$ implies $f(x) \leq_{r} f(y)$ for all $x, y \in A$, namely f is an isotone (or order preserving) map on A [1]. We define the relation \sim_{f} and investigate it. Our main result states, that a compatible partial order r on (A, f) can always be extended to a compatible f-quasilinear partial order R and the maximal compatible partial orders on (A, f) are exactly the compatible f-quasilinear partial orders.

2. Preliminaries

We consider a partially ordered set or poset as a pair $\left(A, \leq_{r}\right)$ where A is a set and \leq_{r} is a reflexive, antisymmetric, and transitive binary relation on A. Let $\left(A, \leq_{r}\right)$ be a poset and take $x, y \in A$ with $x \neq y$. We say that x and y are comparable, when either $x<y$ or $y<x$. Otherwise, x and y are incomparable with respect to \leq_{r}, denoted $x \| y$ in A. A poset $\left(A, \leq_{r}\right)$ is called a chain if every pair of distinct elements from A is comparable with respect to \leq_{r}. When $\left(A, \leq_{r}\right)$ is a chain, we call \leq_{r} a linear order on A. Similarly, we call a poset an antichain if every pair of distinct elements from A is incomparable in \leq_{r}. If $f: A \longrightarrow A$ is a unary operation, then we can restrict our consideration to the so called compatible partial orders of (A, f), i.e. to partial orders with the following property: $x \leq_{r} y$ implies $f(x) \leq_{r} f(y)$ for all $x, y \in A$. In this case the triple $\left(A, f, \leq_{r}\right)$ is called a partially ordered mono-unary algebra.
2.1. Definition. Let $f: A \longrightarrow A$ be a function (unary operation on the set A). We define the relation \sim_{f} as follows: for $x, y \in A$ let $x \sim_{f} y$ if $f^{k}(x)=f^{l}(y)$ for some integers $k \geq 0$ and $l \geq 0$.
It is straightforward to see that \sim_{f} is an equivalence on A. The equivalence class $[x]_{f}$ of an element $x \in A$ is called the f-component of $x . A / \sim_{f}$ denotes the set of all equivalence classes of \sim_{f}.
2.2. Example. Let $\left(A, \leq_{r}\right)$ be a poset and $f: A \longrightarrow A$ be an unary operation on the set A. We take $x, y, z \in A$ as in Fig. 1. We can see $f^{2}(y)=f^{5}(x)$, so $x \sim_{f} y$, consequently $[x]_{f}=[y]_{f}$. As well as we can't find integers $k \geq 0, l \geq 0$ such that
$f^{k}(x)=f^{l}(z)$, we have $x \nsim_{f} z$ and $y \nsim f_{f} z$ too. Clearly, $A=[x]_{f} \cup[z]_{f},[x]_{f}$ and $[z]_{f}$ are f-components and they give a disjoint cover of A.

Figure 1.
2.3. Definition. An element $c \in A$ is called cyclic with respect to f, if $f^{m}(c)=c$ for some integer $m \geq 1$. For a cyclic element

$$
n=n(c)=\min \left\{m \mid m \geq 1 \text { and } f^{m}(c)=c\right\}
$$

is called the period of c. The cycle $C=\left\{c, f(c), \ldots, f^{n-1}(c)\right\}$ has exactly n elements and $f(C)=C$ moreover $f^{k}(c)=f^{l}(c)$ holds if and only if $k-l$ is divisible by n.
2.4. Example. Let $\left(A, \leq_{r}\right)$ be a poset and $f: A \longrightarrow A$ be an unary operation on the set A. We take $c \in A$ as in Fig. 2.
We can see $f^{5}(c)=c$, so $n(c)=5$ and $C=\left\{c, f(c), f^{2}(c), f^{3}(c), f^{4}(c)\right\}$. In this case A has five cyclic elements and each element in C is cyclic of period 5 . For example $f^{7}(c)=f^{2}(c)$, because of $5 \mid 7-2$.

Figure 2.

When $n(c)=1$ then $f(c)=c$ and $C=\{c\}$. In this case $c \in A$ is a fixed point of f. If $f: A \longrightarrow A$ has a fixed point, then the f-component of the fixed point has only one cyclic element, this is the fixed point. See Fig. 3.

Figure 3.

2.5. Proposition.

- All cyclic elements of $[x]_{f}$ are in $C=\left\{c, f(c), \ldots, f^{n-1}(c)\right\}$ and each element in C is cyclic of period n.
- Let $\left(A, f, \leq_{r}\right)$ is a partially ordered mono-unary algebra. If $c \in A$ is a cyclic element of period $n \geq 1$, then $C=\left\{c, f(c), \ldots, f^{n-1}(c)\right\}$ is an antichain with respect to \leq_{r} : for $0 \leq i<j \leq n-1$ the elements $f^{i}(c)$ and $f^{j}(c)$ are incomparable with respect to \leq_{r}, that is $f^{i}(c) \| f^{j}(c)$.

The following definition was introduced by S. Földes and J. Szigeti [4].
2.6. Definition. A pair $(x, y) \in A \times A$ is called f-prohibited, if we can find integers $k \geq$ $0, l \geq 0$ and $m \geq 2$ such that m is not a divisor of $k-l$ and $f^{k}(x), f^{k+1}(x), \ldots, f^{k+m-1}(x)$ are distinct elements, moreover $f^{k+m}(x)=f^{k}(x)=f^{l}(y)$.
2.7. Example. Let $\left(A, \leq_{r}\right)$ be a poset and $f: A \longrightarrow A$ be an unary operation on the set A. We take $x, y \in[x]_{f}$ as in Fig. 4. We can see $f^{3}(x), f^{4}(x), f^{5}(x), f^{6}(x), f^{7}(x)$ are different and $f^{3+5}(x)=f^{3}(x)=f^{6}(y)$, and $5 \nmid 6-3$, so $(x, y) \in A \times A$ is an f-prohibited pair.

Figure 4.

A pair $(x, y) \in A \times A$ is f-prohibited, if and only if $f^{k}(x)=f^{l}(y)$ is cyclic and $f^{k+l}(x) \neq f^{k+l}(y)$ for some integers $k \geq 0$ and $l \geq 0$. For example $f^{2}(y)=f^{4}(x)$ is cyclic and $f^{2+4}(x) \neq f^{2+4}(y)$, so $(x, y) \in A \times A$ is an f-prohibited pair.
2.8. Definition. Let $y \in[x]_{f}$ and $c \in[x]_{f}$ a cyclic element of period $n \geq 1$. There exists an integer $t \geq 0$ such that $f^{t}(y)=c$. We denote the distance of y from c as follows

$$
d(y, c)=\min \left\{t \mid t \geq 0 \text { and } f^{t}(y)=c\right\} .
$$

The following propositions are proved in [4].
2.9. Proposition. Let $\left(A, f, \leq_{r}\right)$ be a partially ordered mono-unary algebra and $y \in[x]_{f}$ furthermore $c \in[x]_{f}$ a cyclic element of period $n \geq 1$. Then we have:

- (x, y) is f-prohibited if and only if $n \geq 2$ and $d(x, c)-d(y, c)$ is not divisible by n.
- If $(x, y) \in A \times A$ is an f-prohibited pair, then $(x, y) \notin r$ and $(y, x) \notin r$, i.e. x and y are incomparable elements with respect to \leq_{r}, that is $x \| y$.

3. The order components of $\left(A, f, \leq_{r}\right)$

3.1. Definition. Let $\left(A, f, \leq_{r}\right)$ be a partially ordered mono-unary algebra. We define the relation \triangleleft_{r} on $B=A / \sim_{f}=\left\{[x]_{f} \mid x \in A\right\}$ as follows: for $x, y \in A$ let $[x]_{f} \triangleleft_{r}[y]_{f}$ if $x_{1} \leq_{r} y_{1}$ for some $x_{1} \in[x]_{f}$ and $y_{1} \in[y]_{f}$.

It is easy to see that \triangleleft_{r} is a quasiorder on $B=A / \sim_{f}$, namely \triangleleft_{r} is reflexive and transitive on B.
3.2. Proposition. If $[x]_{f} \triangleleft_{r}[y]_{f}$ and $[y]_{f} \triangleleft_{r}[x]_{f}$ for the f-components $[x]_{f} \neq[y]_{f}$, then there is no cyclic element $c \in[x]_{f} \cup[y]_{f}$ of period $n \geq 1$.
3.3. Definition. The relation \equiv_{r} is defined on $B=A / \sim_{f}$ as follows: for $x, y \in A$ let $[x]_{f} \equiv_{r}[y]_{f}$ if $[x]_{f} \triangleleft_{r}[y]_{f}$ and $[y]_{f} \triangleleft_{r}[x]_{f}$. It is well known, that starting from the quasiorder \triangleleft_{r}, the above definition provides an equivalence on B. We define the order component of x in $\left(A, f, \leq_{r}\right)$ by

Clearly, $[x]_{f} \subseteq\langle x\rangle \subseteq A$ and $\langle x\rangle$ is a subalgebra in (A, f), which corresponds to the \equiv_{r} equivalence class $\left[[x]_{f}\right]_{\equiv_{r}}$ of $[x]_{f}$ in B. It is easy to see that $\{\langle x\rangle \mid x \in A\}$ is a partition of A :

$$
\cup_{x \in A}\langle x\rangle=A \text { and }\langle x\rangle=\langle y\rangle \text { or }\langle x\rangle \cap\langle y\rangle=\varnothing \text { for all } x, y \in A .
$$

We shall make use of the partial order $<_{r}$ on $B / \equiv_{r}=\left(A / \sim_{f}\right) / \equiv_{F_{r}}$, which can be derived from \triangleleft_{r} in a natural way: $\langle x\rangle<_{r}\langle y\rangle$ if $[x]_{f} \triangleleft_{r}[y]_{f}$.
3.4. Proposition. Let $\left(A, f, \leq_{r}\right)$ be a partially ordered mono-unary algebra. If $x \in A$ and there is no cyclic element in $\langle x\rangle$, then there exists a linear order ρ on $\langle x\rangle$ with the following properties:

- ρ is compatible on $(\langle x\rangle, f):(u, v) \in \rho \Rightarrow(f(u), f(v)) \in \rho$ for all $u, v \in\langle x\rangle$,
- ρ is an extension of \leq_{r} on the elements of $\langle x\rangle$.

If $c \in\langle x\rangle$ is a cyclic element, then $\langle x\rangle=[x]_{f}$.
3.5. Proposition. Let $\left(A, f, \leq_{r}\right)$ be a partially ordered mono-unary algebra. If $x \in A$ and $c \in\langle x\rangle$ is a cyclic element of period $n \geq 1$, then there exists a partial order ρ on $\langle x\rangle=[x]_{f}$ with the following properties:

- ρ is compatible on $\left([x]_{f}, f\right):(u, v) \in \rho \Rightarrow(f(u), f(v)) \in \rho$ for all $u, v \in[x]_{f}$,
- ρ is an extension of \leq_{r} on the elements of $[x]_{f}$,
- $[x]_{f}$ can be obtained as the union of n pairwise disjoint chains with respect to ρ.

4. The main results

4.1. Definition. A compatible partial order R on a mono-unary algebra (A, f) is called f-quasilinear, if either $(x, y) \in R$ or $(y, x) \in R$ holds for all non f-prohibited pairs $(x, y) \in A \times A$.

It is easy to see that a compatible f-quasilinear partial order is linear if and only if the function f has no proper cycle.
4.2. Proposition. If a compatible partial order R on a mono-unary algebra (A, f) is f-quasilinear, then it is maximal (with respect to containment) among the compatible partial orders of (A, f).

The following theorem was proved by S. Földes and J. Szigeti in [4].
4.3. Theorem. If $\left(A, f, \leq_{r}\right)$ is a partially ordered mono-unary algebra, then there exists a compatible partial order R on (A, f) with the following properties:

- R is an extension of r, i.e. $r \subseteq R$,
- R is f-quasilinear.
4.4. Corollary. A compatible partial order R on (A, f) is maximal (with respect to containment) if and only if R is f-quasilinear.

References

[1] Körtesi, P., Radeleczki, S., Szilágyi, Sz. : Congruences and isotone maps on partially ordered sets, manuscript (2004), University of Miskolc
[2] Szigeti, J., Nagy, B. : Linear extensions of partial orders preserving monotonicity, Order 4 (1987), 31-35.
[3] Szpilrajn, E. : Sur l'extension de l'ordre partiel, Fund. Math. 16 (1930), 386-389.
[4] Földes, S. , Szigeti, J.: Maximal compatible extensions of partial orders, submitted

