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Abstract

This paper is inspired from a seria of papers written by J.A.
Kalman, in 1955-1959, having the subject the postulates for lattices.
It refers especially to systems formed from absorption, idempotence
and associativity laws. Following the Kalman’s indications from [1],
we studied an extended system of axioms, finding all the implications
between the subsets of this system.

Introduction

Let us denote by L the family of all algebraic systems l = (L,∧,∨) consisting
of a set L, together with two binary operations on it and let ω be the following
set of axioms :

(1) x ∧ (x ∨ y) = x (5) x ∨ (x ∧ y) = x
(2) x ∨ (y ∧ x) = x (6) x ∧ (y ∨ x) = x
(3) (y ∨ x) ∧ x (7) (y ∧ x) ∨ x = x
(4) (x ∧ y) ∨ x = x (8) (x ∨ y) ∧ x = x
(A) x ∧ (y ∧ z) = (x ∧ y) ∧ z (B) x ∨ (y ∨ z) = (x ∨ y) ∨ z
(C) x ∧ y = y ∧ x (D) x ∨ y = y ∨ x
(I) x ∧ x = x (J) x ∨ x = x

and for each ξ ∈ ω, let Lξ be the family of all l in L such that l obeys all the
laws in ξ. Sorkin considered the set ω in [5] §2, and found all the subsets of ω
which constitute an independent set of axioms for lattices. For each ξ ⊆ ω,
Lξ, is a family of generalized lattices. Mostly in the years’60 and ’70, a
few mathematicians studied noncommutative generalizations of lattices: S.I.
Matsushuita, P. Jordan, M.D. Gerhardts, H. Alfonz and nowadays J. Leech,
R.J.Bignall, Gh. Fărcaş, Matthew Spinks, Karin Cvetko-Vah, From these,
Gh. Fărcaş and J. Leech have helped permanently author of this paper in
studying these structures.
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About the postulates for lattices have also been written books we mention
here ”Axiomele laticilor şi algebrelor booleene” (”The Axioms of Lattices and
Boolean Algebras”) by S. Rudeanu.

In studying noncommutative generalizations for lattices, there were con-
sidered different systems of axioms included in. The study of the system ω
made by Kalman in [1] is useful even today, as much as the study of an en-
larged system denoted by ω+, having in addition two axioms (A0) and (B0),
which are weaker than the associativity of ” ∧ ” and ” ∨ ”.

Kalman mentioned that, at the beginning of the study of any family Lξ,
the following problems arise: Pξ to find all the subsets of ω that constitute an
independent system of axioms for the family Lξ and Qξ to find all the laws (X)
in ω which are obeyed by every l in Lξ. Sorkin has solved the problem Pω and
the problem Qω is trivial since Lω coincide all the class of lattices. Kalman
proved results that essesntially solve all the problems Pξ and Qξ , with ξ ⊆ ω
. He gave a table presenting ”what results” from each independent subset of
ω. The table has 95 lines and contains 351 such implications.

In [2] and [3] we studied problems conected with the problems Pξ and Qξ

with ξ ⊆ ω : the idempotency in systems of the form L[ ], namely the
systems Lξ where ξ is constituted from two absorption laws, the problem of
commutativity of ∧ and ∨ in the systems of the form L[ ], the relations
among the systems of the form L[ ]. This study was done using direct
proofs and counterexamples.

Also Kalman considered weaker axioms than associativity :

(A0) x ∧ (y ∧ x) = (x ∧ y) ∧ x and (B0) x ∨ (y ∨ x) = (x ∨ y) ∨ x

If we add to the system ω these two axioms, then the study of ω+ = ω ∪
{(A0), (B0)} is again interesting. For instance we are interested to find out
what absorption, idempotency, commutativity axioms result from a certain
system of absorption, idempotency, commutativity axioms. We want to see
when the associativity axioms are essential in obtaining a certain result and
when can they be replace by weaker axioms. The study of this extended
system of axioms was proposed by Kalman in [1] §3 and is made by me in
the present paper.

In the first section we make some remarks on the results obtained in
[2] and [3] and the results obtained by Kalman concerning the subsets of
absorption identities. The second section (Closure operations) presents some
elementary results concerning closure operations on a given complete lattice.
In this second section we define also the closure operator a, which will be
essential for solving the proposed problem.

The third section presents the compatibility of a with a group of auto-
morphisms. The fourth section contains the main results of the paper. The
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preparing results which are the four lemmas were given by Kalman in [1] and
proved here by me. These helped me to establish Theorem 1 and Theorem
2 for ω+ and make the program for proving them.

1 The seven classes of noncommutative lat-

tices

As we said in the previous section, in [2] were presented some classes of
algebraic structures generalizing lattices, of the form L[ ], namely Lξ where
ξ is constituted from four absorption laws. More precisely were considered
groups of four absorptions, two having the operation ∧ outside the brackets
and the other two, the operation ∨ outside the brackets. For instance

a ∧ (a ∨ b) = a, (a ∨ b) ∧ a = a, a ∨ (a ∧ b) = a, (b ∧ a) ∨ a = a.

We attempted to answer how many groups of such absorption laws we have,
namely how many essentially different classes of noncommutative generaliza-
tions of lattices define they. We considered the following relation between
two systems of the described type:

S1 ∼ S2 ⇔ S1 = S2 or (S1)
∧ = S2 or (S1)

∨ = S2 or (S1)
∧∨ = S2.

that is: S1 is equivalent with S2 iff S1 is equal to S2 or S2 can be obtained
from S1 by interchanging the performing order of ” ∧ ”, or ” ∨ ”, or of both
operations. I found twelve equivalence classes having the representatives:
S ′∧∧

, S∧∨
, S ∧∧∨

, S∨∧
, S∨∨

, S ∨∧∨
, S∧∨∧∨

, S ′∧∨∧∨
, S∧∧

, S∧∨∨
, S ′∨∨

, S∧∨∧
(see tabel 1).

From these S ′∧∨∧∨
, is the strongest because the algebraic structures defined

by S ′∧∨∧∨
has both operations commutative, S ′∧∧

and S ′∨∨
have just one operation

commutative. From these twelve, the last four are the dual of other four:
S∧∧

= (S∨∨
)∗, S∧∨∨

= (S ∧∧∨
)∗, S∧∨∧

= (S ∨∧∨
)∗, S ′∨∨

= (S∧∧
)∗. (* means the dual of).

Thus we have in fact seven essentially different classes of noncommutative
lattices.

Kalman in his paper [1] considered different the equivalence relation be-
tween the systems of axioms:

S1 ∼ S2 ⇔ ∃ σ ∈ P such that S2 is the image of S1 by σ.
Here P is a group of permutations generated by two certain permutation

of the axioms from ω. In fact, the Kalman’s definition can be described thus:

S1 ∼ S2 ⇔ S1 = S2 or (S1)
∧ = S2 or (S2)

∧ or (S1)
∧∨ = S2 or

S∗1 = S2 or (S∗1)
∧ = S2 or (S∗2)

∧ or (S∗1)
∧∨ = S2
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For instance, if we want to see the equivalence class of the system formed
from the axioms (1) and (2), system denoted by [12], we know that the axiom
(1) can become any other absorption axiom, and also (2) by the following
sketch:

Thus, the equivalence class of [12] is [12] = {[12], [85], [34], [67], [56], [41], [78], [23]}.
If we examine the Kalman’s table 2 from [1], he obtained 12 equivalence

classes having representatives with four absorption laws. We present below
an extract from this table, containing them:

1. 1234 S ′∧∨∧∨
2. 1235 S∧∨∧∨

and S ∨∧∨
3. 1236 of type 3 + 1
4. 1237 S∧∨∧

and S ∧∧∨
5. 1256 S∨∧
6. 1257 of type 3 + 1
7. 1258 S∧∧

and S∨∨
8. 1267 S ′∨∨

and S ′∧∧
9. 1268 of type 3 + 1
10. 1278 S∧∨
11. 1357 S∧∨∧∨
12. 1368 of type 3 + 1

Table 1

From these twelve, four are of type 3+1 (having three absorption with
the same operation outside the brackets). The other eight are representatives
for the equivalence classes we found, in[2], as it is indicated in table 1. As it
is mentioned in all the papers [1], [2], [3] there are examples that prove that
these classes of noncommutative generalizations are distinct.
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2 Closure operations

Let us consider an operator a : P(ω+) → P (ω+) defined by:

aξ = {(X) ∈ ω+ | (X) is obeyed in any l ∈ Lξ}.
We can easily verify that it is a closure operator on ω+ = ω ∪ {A0, B0}
(defined in the Introduction). In order to establish the exact value of aξ, for
every ξ ⊆ ω+, we will need other closure operators, which ”approximate” up
and down our operator a.

Our discussion from this section takes place in the general frame of a
complete lattice with greatest element V , and it will be applied in the next
sections for the complete lattice of systems of axioms P(ω+).

Following the Kalman ideas, we will consider a complete lattice L with
greatest element V, G a group of lattice automorphisms g : L → L and C the
set of all closure operations c : L → L, which are ”compatible with G”, i.e.
which are such that xgc = xcg, for all x and g in G. If we define an order
relation ” ≤ ” by: c ≤ c′ if and only if xc ≤ xc′ for all x in L, it is easy
to verify that C becomes a complete lattice. Let Z be the set of all subsets
Z of L which are such that (i) V ∈ Z (ii) if x ⊆ Z, then Inf X ∈ Z and
(iii) if x ∈ Z, then xg ∈ Z for all g in G. The set Z becomes a complete
lattice when for Z, Z ′ in Z we set Z ⊆ Z ′ if and only if Z ⊆ Z ′ (set theoretic
inclusion). Also a dual isomorphism ψ of G onto Z may be defined by setting:
cψ = {x | x ∈ L and x = xc}.

The inverse dual isomorphism ψ is given by:

x(Zψ−1) = Inf{y | y ∈ Z and y ≥ x}
If c0 is a partially defined unary operation on L i.e. a mapping of some subset
L0 of L into L, and if c in C is given by:

c = Inf{b | b ∈ C and xbc0 for all x ∈ L0},
it can be easy verified that c : L → L is a closure operator. We will call c0 a
”G-support” of c. If Z0 is any subset of L, and if Z in Z is given by:

Z = Inf{W | W ∈ Z and W ⊇ Z0},
we will call Z0 a ”G base” of the closure operation Zψ−1. If c is any closure
operation on L and x ∈ L, we will say that x is ”c”-closed if x = xc and that
x is ”c-independent” if no y in L is such that y < x and yc = xc.

Remark 1. If c1, c2 : L → L are two closure operation such that c1 ≤ c2,
then, for any ξ ∈ L,

a) ξ is c1-dependent ⇒ ξ is c2-dependent
b) ξ is c2-dependent ⇒ ξ is c1-independent.
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Indeed, suppose there exist y < ξ such that yc1 = ξc1. Then we have
y < ξ ≤ ξc1 = yc1 ≤ yc2, thus ξ ≤ yc2. Applying c2 we have ξc2 ≤ yc2.
The converse, inequality is obvious since y < ξ. Thus ξc2 = yc2 and ξ is c2

dependent
b) Results from a).

3 The compatibility of a with a group of lat-

tice - automorphisms

On the family L of all algebraic systems l = (L,∧,∨) consisting of all the set
L together with binary operations ∧ and ∨, Kalman considered the transfor-
mations Π and ρ :

π : L → L, ρ : L → L, ∀ l = (L,∧,∨) ∈ L, lΠ = (L,∧Π,∨Π), lρ = (L,∧ρ,∨ρ)

where,
(9) x ∧π y = y ∨ x , x ∨π y = x ∧ y , ∀ x, y ∈ L
(10) x ∧ρ y = x ∨ y , x ∨ρ y = x ∧ y , ∀ x, y ∈ L.
It is easy to verify that ρπ = π3ρ and Π4 = ρ2 = ε (the identity trans-

formation). The transformation Π and ρ generate in the subgroup of all
transformations on L, a subgroup Γ and all the elements of Γ can be written
in at least one way in the form Πmρn, m ∈ {0, 1, 2, 3}, n ∈ {0, 1, 2}.

Kalman also considered two permutations p and q in the permutation
group of the elements 1, 2, 3, 4, 5, 6, 7, 8, A, B, C, D, I, J, A0, B0. We will con-
sider in the same way two permutation p and q of the elements 1, 2, 3, 4, 5, 6, 7, 8,
A,B, C, D, I, J, A0, B0 :

p =

(
1 2 3 4 5 6 7 8 A B C D I J A0 B0

2 3 4 1 8 5 6 7 B A D C J I B0 A0

)

q =

(
1 2 3 4 5 6 7 8 A B C D I J A0 B0

5 6 7 8 1 2 3 4 B A D C J I B0 A0

)

By the fact p correspond to the permutation Π we meant that p indicates
the correspondence between the axioms fulfilled in an algebraic structure
l ∈ L and the correspondent axioms that hold in lΠ.

Analogously we determine q. It is easy to verify that, for all l ∈ L
and (X) ∈ ω+; l obeys (X) ⇔ lΠ obeys (X)p ⇔ lρ obeys (X)q. Let P
be the subgroups generated by p and q in the group of all permutations of
the elements of ω+. It is easily seen that the elements of p and q verify:
p4 = q2 = e and qp = p3q.
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If follows that the elements of p are precisely of the form pmqn, m ∈
{0, 1, 2, 3}, n ∈ {0, 1, 2} and that the mapping λ : P → Γ, λ(pmρn) = Πmρn,
m ∈ {0, 1, 2, 3}, n ∈ {0, 1, 2} is an homomorphism of P onto Γ (we will see
in §4 that λ is in fact an isomorphism).

We give below the permutation subgroup generated by p and q

r 1 2 3 4 5 6 7 8 A B C D I J A0 B0

e 1 2 3 4 5 6 7 8 A B C D I J A0 B0

p 2 3 4 1 8 5 6 7 B A D C J I B0 A0

p2 3 4 1 2 7 8 5 6 A B C D I J A0 B0

p3 4 1 2 3 6 7 8 5 B A D C J I B0 A0

q 5 6 7 8 1 2 3 4 B A D C J I B0 A0

pq 6 7 8 5 4 1 2 3 A B C D I J A0 B0

p2q 7 8 5 6 3 4 1 2 B A D C J I B0 A0

p3q 8 5 6 7 2 3 4 1 A B C D I J A0 B0

Table 2.

Using the following:

• an axiom (X) is true in l ⇔ the axiom (X)p is true in lΠ = l(pλ)

• an axiom (X) is true in l ⇔ the axiom (X)q is true in lρ = l(qλ)

• λ is a homomorphism,

the following lemma hold:

Lemma 1. For all l ∈ L, (X) in ω+ and r ∈ P, l obeys the law (X) if and
only if l(rλ) obeys the law (X)r.

If we choose a permutation r ∈ P , to each subset of axioms from ω+ we
can associate the corresponding subset of axioms, by r. Thus we have defined
a transformation µ :

ξ(rµ) = {(Y ) | ∃ r ∈ P and ∃ (X) ∈ ξ and such that (Y ) = (X)r}

having the domain P. rµ is a lattice automorphism of the Boolean algebra
P (ω+). If we denote by G the immage of µ, we have that µ is an isomorphism
of P onto the group of automorphisms of P (ω+).

Let’s choose again a permutation r ∈ P. We notice that the operator a
defined in §2 is, by it’s definition, compatible with any transformation which
associates to a ξ ⊆ ω+ the resulting subset (ξ)r (immage of the set ξ by
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r), namely [(ξ)r]a = (ξa)r. On the other side, from definition of µ we have
ξ(rµ) = (ξ)r. Thus,

[ξ(rµ)]a = [(ξ)r]a = (ξa)r = (ξa)(rµ), ∀ rµ ∈ G,

namely we have:

Lemma 2. The closure operation a is compatible with G.

In the final of this paragraph we will define on ω+ the relation: if ξ, η ⊆ ω+

are such that η = ξ(rµ) for some r ∈ P. we will call ξ and η ”congruent”
subsets of ω+ and it follows from Lemma 2 that, if a subset ξ of ω+ is a closed,
[a-independent] then every η congruent to ξ is a-closed [a-independent].

4 Main result

If a partially defined unary operation c0 on a given set has domain {ξ1, ξ2, . . . , ξn}
and we have ξic0 = ηi, i = 1, n, we will say that c0 has ”defining relations”
ξ1 → η1, ξ2 → η2, . . . , ξn → ηn. If the distinct elements of a nonempty subset
ξ of ω are (X1), . . . , (Xn), we will write ξ = [X1X2 . . . Xn]. Let a0 be the
partially defined operation on the subset of ω which has defined relations

[A] → [A0], [C] → [A0], [12] → [J ], [15] → [J ], [1C] → [8], [1D] → [6],

[17] → [I], [123] → [8], [127A0] → [8], [1267B0] → [D] and [1368BJ ] → [D],

and let a1 be the closure operation on the subsets of ω which has G-support
a0. The following lemma hold:

Lemma 3. a1 ≤ a.

Proof. It is sufficient to prove ξa ⊇ ξa0 for each ξ in the domain of a0.
In the presence of associativity (A) or commutativity (C), the axiom A0:

(x∧ y)∧ x = x∧ (y ∧ x) is obviously fulfilled. The following six implications
and the last one are true by Lemma 3 from [1]. We must prove [127A0] → [8]
and [1267B0] → [D].

First we must prove using (1), (2), (7) and (A0) that (8): (x∨y)∧x = x is
fulfilled. From [12] results [J ] and from [1J ] results (I). In any l = (L,∧,∨),
from L[127A0], for any x, y ∈ L, using A0 we have first:

[x ∧ (x ∨ y)] ∧ x = x ∧ [(x ∨ y) ∧ x]
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The member from left is equal to x by 1. After that we apply ∨[(x ∨ y) ∧ x]
and thus:

x ∨ [(x ∨ y) ∧ x] = (x ∨ y) ∧ x.

But by (2) the member from left is equal to x, and thus we obtain that (8)
is true in L.

We will prove [1267B0] implies [D].

x ∨ y
7
= [y ∧ (x ∨ y)] ∨ (x ∨ y)

6
= y ∨ (x ∨ y)

B0= (y ∨ x) ∨ y.

Analogously y ∨ x = (x ∨ y) ∨ x.
Using these, we have:

x ∨ y = (y ∨ x) ∨ y = (y ∨ x) ∨ [y ∧ (y ∨ x)]
2
= y ∨ x.

Remark 2. The defining relations [1267B] → [D] and [127A] → [8] from the
study of ω, in [1], were replaced, after Kalman’s idea with [1267B0] → [D]
and [127A0] → [B]. Thus the associativity appears just in two of the defining
relations of a0.

Remark 3. We remark that the value of the operator a1 can be calculated.
We consider the defining relations of a0 and their permutation obtained by
table 2. There are 66 distinct relations, the set of which will be denoted
by S. We consider then the operator c : P (ω+) → P (ω+) which acts as
follows on a given ε ⊆ ω+ : adds the conclusion of each from the 66 relations,
if the respective hypothesis is found in ξ, replacing after that each time ξ
with the result system. It’s obvious that, there exits a natural number which
depends of the given ξ, n(ξ) such that cn(ξ)(ξ) = cn(ξ)+1(ξ). If we consider
n = sup

ξ∈P (ω+)

n(ξ), then , for any ξ ⊆ ω+

(11) ξa1 = ξcn

since cn is a closure operator, verifies cn ≥ a0 on the domain of a0 and it
is the least with these properties.

We will consider now a few algebraic structures (L,∧,∨) which will be
counterexamples for certain implications between the subsets of ω+. Kalman
indicated in [1] the following examples (the sequences mean the rows of the
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corresponding multiplication tables for ∧ and ∨):

L1 = {0, 1, 2, 3, 4}, 00000 01111 01202 01033 01234 01234 11234 22244 33434 44444

L2 = {0, 1, 2, 3, 4}, 00000 01111 01202 01133 01234 01234 11234 22244 33434 44444

L3 = {0, 1, 2}, 000 011 012 022 112 222

L4 = {0, 1}, 01 01 00 11

L5 = {0, 1, 2}, 000 012 012 022 111 222

L6 = {0, 1, 2}, 010 011 012 022 212 222

L7 = {0, 1}, 01 01 00 11

L8 = {0, 1}, 01 10 00 00

L9 = {0, 1}, 01 11 00 00

L10 = {0, 1, 2}, 000 011 012 022 212 222

L11 = {0, 1, 2}, 000 011 012 012 222 222

L12 = {0, 1, 2}, 000 001 002 012 222 222

L13 = {0, 1, 2, 3}, 0000 0111 0122 0123 0233 3133 3323 3333

Remark 4. a) L2 doesn’t verify A0. Indeed for x = 2 and y = 3, (x∧y)∧x =
x ∧ (y ∧ x) ⇔ 0 = 1.

b) L3 doesn’t verify B0. Indeed, for x = 1, y = 0, we have (x ∨ y) ∨ x =
x ∨ (y ∨ x) ⇔ 1 = 2.

c) L14 satisfies [1368ACIJA0B0] and doesn’t satisfies the rest of the ax-
ioms ω+. Indeed (L14,∧) is the restrictive semigroup of the chain 0 ≤ 1 ≤
2 ≤ 3 and it verifies [ACIA0]. The rest it is easy to verify.

Let z0 be the following family of subsets of ω+.

ℵ1 = [12345678BCDIJA0B0]

ℵ2 = [12345678BDIJB0]

ℵ3 = [123568ACIJA0]

ℵ4 = [123578ABIJA0B0]

ℵ5 = [12358ABIJA0B0]

ℵ6 = [123678ABDIJA0B0]

ℵ7 = [1258ABCIJA0B0]
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ℵ8 = [1368ABCDA0B0]

ℵ9 = [1368ABCDIA0B0]

ℵ10 = [1368ABCDIJA0B0]

ℵ11 = [1368ABCIA0B0]

ℵ12 = [17ABA0B0]

ℵ13 = [1368ACIJA0B0]

and let a2 be the closure operation on the subsets of which has G-base Z0.

Lemma 4. a ≤ a2.

Proof. Since Z0 is a G base of a2, we have:

a2ψ = Z = Inf{W | W ∈ 3Z and W ⊇ Z0}
and in the same time we know from the definition of ψ that Z is the set of
all elements from P (ω+) which are a2-closed, thus, for any ξ ⊆ ω+,

(12) ξa2 = ∩{y ∈ Z | y ⊇ ξ}
We have to prove ξa ≤ ∩{y ∈ Z | y ⊇ ξ}, ∀ ξ ⊆ ω+.
We notice from (12) and from definition of Z that

Z = Z0 ∪
⋃
g∈G

g(Z0) ∩ {ω+} ∪ F,

where F denotes the sets of the form inf X, where X ⊆ Z0∪
⋃
g∈G

g(Z0)∪{ω+}.

Thus
(13) ξa2 = ∩{y ∈ Z0 ∪

⋃
g∈G g(Z0) ∪ {ω+} | y ⊇ ξ}

If we prove that all the elements considered in the last expression are
a-closed, then the lemma is true, since each such y will satisfy

y = ya ⊇ ξa.

The element ω+ is obviously a-closed, and if the elements of Z0 are a-closed,
then also the elements of g(Z0) are a-closed, since a is compatible with any
g ∈ G. The fact that the elements of Z0 are a-closed results from the fact
that the algebraic structures Li, i = 1, 13 presented in this paragraph verify
[ℵi] but don’t verify ω+ \ ℵi.

Remark 5. We remark that the values of the operator a2 can be calculated.
If we consider the systems ℵ1,ℵ2, . . . ,ℵ13 and the permutated systems ob-
tained from them by table 2, we obtain 104 systems ℵ1,ℵ2, . . . ,ℵ104. By
definition of G (see §3) we have then:

(14) ξa2 ∩ {y ∈ {ℵ1,ℵ2, . . . ,ℵ104} | y ⊇ ξ}
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We now state the theorems which are the main results of this paper.

Theorem 1. The operation a0 is a G-support of a and the family Z0 is a G
base of a.

Proof. To prove theorem 1 it will be sufficient to show that a1 = a2. Then,
by Lemma 3 and 4, we will have a1 = a = a2, completing the proof.

Let us consider θ ⊆ ω+, arbitrary systems of axioms.
The computer programm calculates θa1 and θa2 by (11) and (13) and

compares the results. For any θ ⊆ ω+ we have θa1 = θa2 and thus a1 = a =
a2.

Let’s denote by θ the common value of θa1 and θa2.

Theorem 2. A subset of ω+ is a-independent if and only if it is congruent
to one of the subsets θ listed in column θ of table 3. The entry in the row of
a certain θ and column θ of table 3 is θa.

Note It may easily be checked that each entry in column θ of table 3
is the lexicographically first element of it’s congruence class. Thus, no two
subsets in column 0 are congruent to each other.

Proof. Since for each θ ⊆ ω+ we know the exact value of θa as we explained
in the proof of theorem 1 means that we can establish, by a procedure with
an element θ ⊆ ω+ is a-independent. Calculating the value of a for the
subsystems of θ.

5 About the programm

The programm has got a few functions. The must important are:

• a function ”minim” which receive a sequence representing a system of
axioms, calculates the elements from the same congruence class using
table 2, and returns the least sequence in lexicographical order.

• a function ”aplică t” which calculates a1 for a given sequence θ, using
(11).

• a function ”aplicaă 2” which calculates a2 for a given sequence θ, using
(13). The matrix ℵ having the rows ℵ1, . . . ,ℵ104 is taken from the main
programm and it is generated using table 2 by another function

• a function ”verifindep” which verifies if a given system is a-independent.
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The main programm generates the subsets of ω+ in lexicographical order.
When each system θ is formed, it is ”minimized”, by the function ”minim”.
After that the programm verifies the independency of the resulted system,
called ”min.” We can renounce first at verifying the independency and we
want to see first that a1 = a2 as we explained in the proof of the Theorem 1.
In this way we follow the logic order of the ideas. In the case when we verify
the independency,

when the system θ is independent it is put in a list, introducing it where it
is it’s place in lexicographical order. After the last element ξ ⊂ ω+ has been
generated (this is [B0]) and it is verified it’s independency, the programm
starts to print the list of a-independent systems. After printing θ ⊆ ω+ from
the list, it calculates θa1 by the function ”aplicat” and θ2 by the function
”aplica 2”, verifies if θa1 and θa2 coincide and if not, it gives us a message
and stops running. No such message has been received and thus θa1 = θa2.

In the case of the coincidence, it prints θa1 and goes further to the next
θ from the list.

The table 3, of the results, contains 599 rows for all the 599 independent
systems found in ω+.

For a simple writing of the results, the programm prints the letters ”k”
and ”l” instead of notations ”(A0)” and ”(B0)”. The axioms (A), (B), (C),
(D), (I), (J) are denoted in the list of the results with small letters.

Let’s interpret the results for two systems of axioms.
The system [1234]:
-is independent since appears in the first coloumn of the tabel 3.
- implies the axioms 1, 2, 3, 4, 5, 6, 7, 8, I, J and no other axioms from ω+.
- together with the axiom (A), implies [12345678ACIJA0].
-together with the axiom (C), implies [12345678CIJA0].
-together with the axiom (A0) ( written in the tabel as k), implies [12345678CIJA0]

namely the same system of axioms as in the case if we had added (C), and
the same system of absorption, commutativity, and idempotence axioms as
in the case if we had added (A).

The system [1368]:
-is independent since appears in the first coloumn of the tabel 3.
-implies the axioms 1, 3, 6, 8 and no other axioms from ω+ .
- together with the axiom (A) it implies [1368AA0].
- together with the axiom (C) it doesn’t form an independent subsystem

and we must find a subsystem of [1368C] which is independent and implies
these axioms. We find [13C], which implies [1368CA0] and no other axioms
beside these.

-together with the axiom (A0), it forms an independent system, and it
implies just the same system [1368A0]. Thus, from the point of view of
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absorption, commutativity and idempotence axioms that result, we have the
same result if we add (A) or (A0), but we don’t have the same result if we
add (C) or (A0).

tetha tetha-bar
1 1
12 12ij
123 1238ij
1234 12345678ij
1234a 12345678acijk
1234ab 12345678abcdijkl
1234al 12345678acdijkl
1234c 12345678cijk
1234k 12345678cijk
1234kl 12345678cdijkl
1235 12358ij
12356 123568ij
123567 12345678ij
12356a 123568acijk
12356ab 12345678abcdijkl
12356al 12345678acdijkl
12356b 12345678bdijl
12356bk 12345678bcdijkl
12356k 123568cijk
12356kl 12345678cdijkl
12356l 12345678dijl
12357 123578ij
12357a 123578aijk
12357ab 123578abijkl
12357al 123578aijkl
12357b 123578bijl
12357bk 123578bijkl
12357k 123578ijk
12357kl 123578ijkl
12357l 123578ijl
1235a 12358aijk
1235ab 12358abijkl
1235al 12358aijkl
1235b 12358bijl
1235bd 12345678bdijl
1235bk 12358bijkl
1235d 12345678dijl
1235k 12358ijk
1235kl 12358ijkl
1235l 12358ijl
1236 12368ij
12367 123678ij
1236a 12368aijk
1236ab 123678abdijkl
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1236al 123678adijkl
1236b 123678bdijl
1236bk 123678bdijkl
1236k 12368ijk
1236kl 123678dijkl
1236l 123678dijl
1237 12378ij
1237a 12378aijk
1237ab 12378abijkl
1237ac 12345678acijk
1237al 12378aijkl
1237b 12378bijl
1237bk 12378bijkl
1237c 12345678cijk
1237k 12378ijk
1237kl 12378ijkl
1237l 12378ijl
123a 1238aijk
123ab 1238abijkl
123abc 12345678abcdijkl
123ac 123568acijk
123acl 12345678acdijkl
123al 1238aijkl
123b 1238bijl
123bc 12345678bcdijkl
123bd 123678bdijl
123bk 1238bijkl
123c 123568cijk
123cl 12345678cdijkl
123d 123678dijl
123k 1238ijk
tetha tetha-bar
123kl 1238ijkl
123l 1238ijl
125 125ij
1256 1256ij
1256a 1256aijk
1256ab 1256abijkl
1256al 1256aijkl
1256k 1256ijk
1256kl 1256ijkl
1257 1257ij
1257a 12578aijk
1257ab 12578abijkl
1257al 12578aijkl
1257b 1257bijl
1257bk 12578bijkl
1257k 12578ijk
1257kl 12578ijkl
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1257l 1257ijl
1258 1258ij
1258a 1258aijk
1258ab 1258abijkl
1258al 1258aijkl
1258b 1258bijl
1258bd 12345678bdijl
1258bk 1258bijkl
1258d 12345678dijl
1258k 1258ijk
1258kl 1258ijkl
1258l 1258ijl
125a 125aijk
125ab 125abijkl
125abd 12345678abcdijkl
125ad 12345678acdijkl
125al 125aijkl
125b 125bijl
125bd 124567bdijl
125bdk 12345678bcdijkl
125bk 125bijkl
125d 124567dijl
125dk 12345678cdijkl
125k 125ijk
125kl 125ijkl
125l 125ijl
126 126ij
1267 1267ij
1267a 123678aijk
1267ab 123678abdijkl
1267ac 12345678acijk
1267al 123678adijkl
1267b 1267bdijl
1267bk 123678bdijkl
1267c 12345678cijk
1267k 123678ijk
1267kl 123678dijkl
1267l 1267dijl
1268 1268ij
1268a 1268aijk
1268ab 1268abijkl
1268al 1268aijkl
1268b 1268bijl
1268bk 1268bijkl
1268k 1268ijk
1268kl 1268ijkl
1268l 1268ijl
126a 126aijk
126ab 126abijkl
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126abc 12345678abcdijkl
126ac 123568acijk
126acl 12345678acdijkl
126al 126aijkl
126b 126bijl
126bc 12345678bcdijkl
126bk 126bijkl
126c 123568cijk
126cl 12345678cdijkl
teha tetha-bar
126k 126ijk
126kl 126ijkl
126l 126ijl
127 127ij
1278 1278ij
127a 1278aijk
127ab 1278abijkl
127ac 124578acijk
127al 1278aijkl
127b 127bijl
127bk 1278bijkl
127c 124578cijk
127k 1278ijk
127kl 1278ijkl
127l 127ijl
128 128ij
128a 128aijk
128ab 128abijkl
128al 128aijkl
128b 128bijl
128bd 123678bdijl
128bk 128bijkl
128d 123678dijl
128k 128ijk
128kl 128ijkl
128l 128ijl
12a 12aijk
12ab 12abijkl
12abc 1258abcijkl
12abcd 12345678abcdijkl
12abd 123678abdijkl
12ac 1258acijk
12acd 12345678acdijkl
12acl 1258acijkl
12ad 123678adijkl
12al 12aijkl
12b 12bijl
12bc 1258bcijkl
12bcd 12345678bcdijkl
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12bd 1267bdijl
12bdk 123678bdijkl
12bk 12bijkl
12c 1258cijk
12cd 12345678cdijkl
12cl 1258cijkl
12d 1267dijl
12dk 123678dijkl
12k 12ijk
12kl 12ijkl
12l 12ijl
13 13
135 135ij
1357 1357ij
1357a 1357aijk
1357ab 1357abijkl
1357ac 12345678acijk
1357al 1357aijkl
1357c 12345678cijk
1357k 1357ijk
1357kl 1357ijkl
135a 135aijk
135ab 135abijkl
135abc 12345678abcdijkl
135ac 123568acijk
135acl 12345678acdijkl
135al 135aijkl
135b 135bijl
135bc 12345678bcdijkl
135bd 134568bdijl
135bk 135bijkl
135c 123568cijk
135cl 12345678cdijkl
135d 134568dijl
135k 135ijk
135kl 135ijkl
tetha tetha-bar
135l 135ijl
136 136
1368 1368
1368a 1368ak
1368ab 1368abkl
1368abi 1368abikl
1368abj 1368abdijkl
1368ai 1368aik
1368ail 1368aikl
1368aj 1368aijk
1368ajl 1368aijkl
1368al 1368akl
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1368b 1368bl
1368bi 1368bil
1368bik 1368bikl
1368bj 1368bdijl
1368bjk 1368bdijkl
1368bk 1368bkl
1368i 1368i
1368ik 1368ik
1368ikl 1368ikl
1368il 1368il
1368j 1368ij
1368jk 1368ijk
1368jkl 1368ijkl
1368jl 1368ijl
1368k 1368k
1368kl 1368kl
1368l 1368l
136a 136ak
136ab 136abkl
136abi 136abikl
136abj 136abijkl
136ai 136aik
136ail 136aikl
136aj 136aijk
136ajl 136aijkl
136al 136akl
136b 136bl
136bi 136bil
136bik 136bikl
136bj 136bijl
136bjk 136bijkl
136bk 136bkl
136i 136i
136ik 136ik
136ikl 136ikl
136il 136il
136j 136ij
136jk 136ijk
136jkl 136ijkl
136jl 136ijl
136k 136k
136kl 136kl
136l 136l
13a 13ak
13ab 13abkl
13abc 1368abckl
13abci 1368abcikl
13abcj 1368abcdijkl
13abd 1368abdkl
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13abdi 1368abdikl
13abdj 1368abdijkl
13abi 13abikl
13abj 13abijkl
13ac 1368ack
13aci 1368acik
13acil 1368acikl
13acj 1368acijk
13acjl 1368acijkl
13acl 1368ackl
13ad 1368adkl
13adi 1368adikl
13adj 1368adijkl
13ai 13aik
tetha tetha-bar
13ail 13aikl
13aj 13aijk
13ajl 13aijkl
13al 13akl
13b 13bl
13bc 1368bckl
13bci 1368bcikl
13bcj 1368bcdijkl
13bd 1368bdl
13bdi 1368bdil
13bdik 1368bdikl
13bdj 1368bdijl
13bdjk 1368bdijkl
13bdk 1368bdkl
13bi 13bil
13bik 13bikl
13bj 13bijl
13bjk 13bijkl
13bk 13bkl
13c 1368ck
13ci 1368cik
13cil 1368cikl
13cj 1368cijk
13cjl 1368cijkl
13cl 1368ckl
13d 1368dl
13di 1368dil
13dik 1368dikl
13dj 1368dijl
13djk 1368dijkl
13dk 1368dkl
13i 13i
13ik 13ik
13ikl 13ikl
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13il 13il
13j 13ij
13jk 13ijk
13jkl 13ijkl
13jl 13ijl
13k 13k
13kl 13kl
13l 13l
15 15ij
15a 15aijk
15ab 15abijkl
15abc 1258abcijkl
15abcd 12345678abcdijkl
15ac 1258acijk
15acd 12345678acdijkl
15acl 1258acijkl
15ad 1456adijkl
15al 15aijkl
15c 1258cijk
15cd 12345678cdijkl
15cl 1258cijkl
15k 15ijk
15kl 15ijkl
16 16
16a 16ak
16ab 16abkl
16abc 1368abckl
16abci 1368abcikl
16abcj 1368abcdijkl
16abi 16abikl
16abj 16abijkl
16ac 1368ack
16aci 1368acik
16acil 1368acikl
16acj 1368acijk
16acjl 1368acijkl
16acl 1368ackl
16ai 16aik
16ail 16aikl
16aj 16aijk
16ajl 16aijkl
tetha tetha-bar
16al 16akl
16b 16bl
16bc 1368bckl
16bci 1368bcikl
16bcj 1368bcdijkl
16bi 16bil
16bik 16bikl

21744



16bj 16bijl
16bjk 16bijkl
16bk 16bkl
16c 1368ck
16ci 1368cik
16cil 1368cikl
16cj 1368cijk
16cjl 1368cijkl
16cl 1368ckl
16i 16i
16ik 16ik
16ikl 16ikl
16il 16il
16j 16ij
16jk 16ijk
16jkl 16ijkl
16jl 16ijl
16k 16k
16kl 16kl
16l 16l
17 17
17a 17ak
17ab 17abkl
17abc 124578abcijkl
17abcd 12345678abcdijkl
17abi 17abijkl
17ac 1478acijk
17acd 12345678acdijkl
17acl 124578acijkl
17ad 123678adijkl
17ai 17aijk
17ail 17aijkl
17aj 17aijk
17ajl 17aijkl
17al 17akl
17c 1478cijk
17cd 12345678cdijkl
17cl 124578cijkl
17i 17ij
17ik 17ijk
17ikl 17ijkl
17il 17ijl
17k 17k
17kl 17kl
18 18
18a 18ak
18ab 18abkl
18abd 1368abdkl
18abdi 1368abdikl
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18abdj 1368abdijkl
18abi 18abikl
18abj 18abijkl
18ad 1368adkl
18adi 1368adikl
18adj 1368adijkl
18ai 18aik
18ail 18aikl
18aj 18aijk
18ajl 18aijkl
18al 18akl
18b 18bl
18bd 1368bdl
18bdi 1368bdil
18bdik 1368bdikl
18bdj 1368bdijl
18bdjk 1368bdijkl
18bdk 1368bdkl
18bi 18bil
tetha tetha-bar
18bik 18bikl
18bj 18bijl
18bjk 18bijkl
18bk 18bkl
18d 1368dl
18di 1368dil
18dik 1368dikl
18dj 1368dijl
18djk 1368dijkl
18dk 1368dkl
18i 18i
18ik 18ik
18ikl 18ikl
18il 18il
18j 18ij
18jk 18ijk
18jkl 18ijkl
18jl 18ijl
18k 18k
18kl 18kl
18l 18l
1a 1ak
1ab 1abkl
1abc 18abckl
1abcd 1368abcdkl
1abcdi 1368abcdikl
1abcdj 1368abcdijkl
1abci 18abcikl
1abcj 18abcijkl
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1abd 16abdkl
1abdi 16abdikl
1abdj 16abdijkl
1abi 1abikl
1abj 1abijkl
1ac 18ack
1acd 1368acdkl
1acdi 1368acdikl
1acdj 1368acdijkl
1aci 18acik
1acil 18acikl
1acj 18acijk
1acjl 18acijkl
1acl 18ackl
1ad 16adkl
1adi 16adikl
1adj 16adijkl
1ai 1aik
1ail 1aikl
1aj 1aijk
1ajl 1aijkl
1al 1akl
1b 1bl
1bc 18bckl
1bcd 1368bcdkl
1bcdi 1368bcdikl
1bcdj 1368bcdijkl
1bci 18bcikl
1bcj 18bcijkl
1bd 16bdl
1bdi 16bdil
1bdik 16bdikl
1bdj 16bdijl
1bdjk 16bdijkl
1bdk 16bdkl
1bi 1bil
1bik 1bikl
1bj 1bijl
1bjk 1bijkl
1bk 1bkl
1c 18ck
1cd 1368cdkl
1cdi 1368cdikl
1cdj 1368cdijkl
1ci 18cik
1cil 18cikl
tetha tetha-bar
1cj 18cijk
1cjl 18cijkl
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1cl 18ckl
1d 16dl
1di 16dil
1dik 16dikl
1dj 16dijl
1djk 16dijkl
1dk 16dkl
1i 1i
1ik 1ik
1ikl 1ikl
1il 1il
1j 1ij
1jk 1ijk
1jkl 1ijkl
1jl 1ijl
1k 1k
1kl 1kl
1l 1l
a ak
ab abkl
abc abckl
abcd abcdkl
abcdi abcdikl
abcdij abcdijkl
abci abcikl
abcij abcijkl
abcj abcjkl
abi abikl
abij abijkl
ac ack
acd acdkl
acdi acdikl
acdij acdijkl
acdj acdjkl
aci acik
acij acijk
acijl acijkl
acil acikl
acj acjk
acjl acjkl
acl ackl
ad adkl
adi adikl
adij adijkl
adj adjkl
ai aik
aij aijk
aijl aijkl
ail aikl
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aj ajk
ajl ajkl
al akl
c ck
cd cdkl
cdi cdikl
cdij cdijkl
ci cik
cij cijk
cijl cijkl
cil cikl
cj cjk
cjl cjkl
cl ckl
i i
ij ij
ijk ijk
ijkl ijkl
ik ik
ikl ikl
il il
k k
kl kl
nr. lines 599.000000

Table 3
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