Gauss-Seidel's Theorem for Infinite Systems of Linear Equations (II)

Béla Finta

The purpose of this paper is to extend the classical Gauss-Seidel theorem, known for finite linear systems, to infinite one. First of all we need some technical results [4].

1 Vector norms

Let $x=\left(\begin{array}{c}x_{0} \\ x_{1} \\ \vdots \\ x_{n} \\ \vdots\end{array}\right)$ be a sequence of real numbers represented in the form of an infinite column vector, and we denote by s the real linear space of these sequences. Let $p \in[1,+\infty)$ be a real number and define $l^{p}=\left\{\left.x \in s\left|\sum_{i=0}^{\infty}\right| x_{i}\right|^{p}\right.$ is convergent $\}$. It is well known that l^{p} is a real linear subspace of s and for every $x \in l^{p}$ the formula $\|x\|_{p}=\left(\sum_{i=0}^{\infty}\left|x_{i}\right|^{p}\right)^{1 / p}$ defines a norm on l^{p}. In this way $\left(l^{p},\|\cdot\|_{p}\right)$ is not only a normed linear space, but a Banach space, too. For $p=1$ and $p=2$ we reobtain the Banach space l^{1} and the Hilbert space l^{2}, respectively. In l^{2} we will consider the standard scalar product given by the formula $(x, y)=\sum_{i=0}^{\infty} x_{i} y_{i}$ for every $x, y \in l^{2}$. For $p, q \in[1,+\infty)$ real numbers from $p<q$ results $l^{p} \subset l^{q}$. If s_{0} means the linear subspace of convergent sequences to zero then $l^{p} \subset s_{0}$ for every $p \in[1,+\infty)$. We also consider the linear subspace $l^{\infty}=\{x \in s \mid x$ is bounded $\}$. For every $x \in l^{\infty}$ the formula $\|x\|_{\infty}=\sup _{i \in \mathbb{N}}\left\{\left|x_{i}\right|\right\}$ defines a norm on l^{∞}. In this way $\left(l^{\infty},\|\cdot\|_{\infty}\right)$ is not only a normed linear space, but a Banach space, too. We have: $l^{1} \subset l^{2} \subset s_{0} \subset l^{\infty} \subset s$. All
these spaces we will call vector spaces, the elements vectors and the above mentioned norms vector norms [1]. For this paragraph see also [4].

2 Matrix norms

Let $A=\left(a_{i j}\right)_{i, j \in \mathbb{N}}$ be an infinite matrix of real numbers and we denote by M the real linear space of these infinite matrixes. Let $M^{1}=\left\{A \in M\left|\sup _{j \in \mathbb{N}} \sum_{i=0}^{\infty}\right| a_{i j} \mid\right.$ is finite\}. Then M^{1} is a real linear subspace of M and for every $A \in M^{1}$ the formula $\|A\|_{1}=\sup _{j \in \mathbb{N}} \sum_{i=0}^{\infty}\left|a_{i j}\right|$ defines a norm on M^{1} called column norm. In this way $\left(M^{1},\|\cdot\|_{1}\right)$ becomes not only a real linear normed space, but a Banach space, too. Let $p \in(1,+\infty)$ be a real number and define

$$
M^{p}=\left\{A \in M \left\lvert\, \sum_{i=0}^{\infty}\left(\sum_{j=0}^{\infty}\left|a_{i j}\right|^{q}\right)^{\frac{p}{q}}\right. \text { is finite }\right\}
$$

where q is a real number such that $\frac{1}{p}+\frac{1}{q}=1$.
Theorem 1. The space M^{p} is a real linear subspace of M and for every $A \in M^{p}$ the formula

$$
\|A\|_{p}=\left[\sum_{i=0}^{\infty}\left(\sum_{j=0}^{\infty}\left|a_{i j}\right|^{q}\right)^{\frac{p}{q}}\right]^{\frac{1}{p}}
$$

defines a norm on M^{p}. The space $\left(M^{p},\|\cdot\|_{p}\right)$ is a Banach space.
For $p=2$ we obtain $M^{2}=\left\{A \in M \mid \sum_{i, j=0}^{\infty} a_{i j}^{2}\right.$ is finite $\}$. If we take on M^{2} the scalar product given by the formula $(A, B)=\sum_{i, j=0}^{\infty} a_{i j} b_{i j}$, where $A=\left(a_{i j}\right)_{i, j \in \mathbb{N}}$ and $B=\left(b_{i j}\right)_{i, j \in \mathbb{N}}$, then $\left(M^{2},(\cdot, \cdot)\right)$ will be a Hilbert space.

Let $M^{\infty}=\left\{A \in M\left|\sup _{i \in \mathbb{N}} \sum_{j=0}^{\infty}\right| a_{i j} \mid\right.$ is finite $\}$. Then M^{∞} is a real linear subspace of M and for every $A \in M^{\infty}$ the formula $\|A\|_{\infty}=\sup _{i \in \mathbb{N}} \sum_{j=0}^{\infty}\left|a_{i j}\right|$ defines a norm on M^{∞}, called row norm. In this way $\left(M^{\infty},\|\cdot\|_{\infty}\right)$ becomes not only a normed linear space, but a Banach space, too.

Corollary 1. If for the matrix $A=\left(a_{i j}\right)_{i, j \in \mathbb{N}}$ we have $a_{i j}=0$ for $i>n$ and $j>n$, $n \in \mathbb{N}$, then from theorem 1 we reobtain the results in the finite dimensional space $\mathbb{R}^{n}[3]$.

All these spaces we will call matrix spaces and the above mentioned norms matrix norms. For this paragraph see also [4].

3 The compatibility of the vector and matrix norms

Let $x \in s$ be a sequence of real numbers, and $A=\left(a_{i j}\right)_{i, j \in \mathbb{N}} \in M$ an infinite matrix of real numbers.
Definition 1. We will define the product $A \cdot x$ if for every $i \in \mathbb{N}$ the series $\sum_{j=0}^{\infty} a_{i j} x_{j}$ are convergent. In this case the result vector $y=A \cdot x$ is a column vector with components $y=\left(\begin{array}{c}\sum_{j=0}^{\infty} a_{0 j} x_{j} \\ \sum_{j=0}^{\infty} a_{1 j} x_{j} \\ \vdots \\ \sum_{j=0}^{\infty} a_{i j} x_{j} \\ \vdots\end{array}\right)$
Theorem 2. For every $p \in[1,+\infty]=[1,+\infty) \cup\{+\infty\}$ the vector norm $\|\cdot\|_{p}$ defined on l^{p} is compatible with the matrix norm $\|\cdot\|_{p}$ defined on M^{p}, i.e. $\|A x\|_{p} \leq\|A\|_{p} \cdot\|x\|_{p}$ for every $x \in l^{p}$ and every $A \in M^{p}$.

Corollary 2. If for the matrix $A=\left(a_{i j}\right)_{i, j \in \mathbb{N}}$ we have $a_{i j}=0$ for $i>n$ and $j>n$, $n \in \mathbb{N}$, then from theorem 2 we reobtain the results in the finite dimensional space \mathbb{R}^{n} [3].

For this paragraph see also [4].

4 The matrix norm subordinate to a given vector norm

For every $p \in[1,+\infty]$ and for every $x \in l^{p}$ and $A \in M^{p}$ we have $\|A x\|_{p} \leq\|A\|_{p}$. $\|x\|_{p}$ according to theorem 2. If $x \neq \theta_{l^{p}}$ (the null element of the vector space l^{p})
then $\frac{\|A x\|_{p}}{\|x\|_{p}} \leq\|A\|_{p}$ and we can define $\sup \left\{\left.\frac{\|A x\|_{p}}{\|x\|_{p}} \right\rvert\, x \in l^{p} \backslash\left\{\theta_{l^{p}}\right\}\right\}$. It is known that this formula defines a matrix norm on M^{p}, which we call the matrix norm subordinate to the vector norm $\|\cdot\|_{p}$ defined on l^{p} and we denote by $\|A\|_{p}^{*}=$ $\sup \left\{\left.\frac{\|A x\|_{p}}{\|x\|_{p}} \right\rvert\, x \in l^{p} \backslash\left\{\theta_{l^{p}}\right\}\right\}$. It is immediately that $\|A\|_{p}^{*} \leq\|A\|_{p}$ for every $A \in$ M^{p}.

Theorem 3. For $p \in\{1,+\infty\}$ we have $\|A\|_{p}^{*}=\|A\|_{p}$.
Corollary 3. If for the matrix $A=\left(a_{i j}\right)_{i, j \in \mathbb{N}}$ we have $a_{i j}=0$ for $i>n$ and $j>n$, $n \in \mathbb{N}$, then from theorem 3 we reobtain the results in the finite dimensional space $\mathbb{R}^{n}[3]$.

We mention that for the author is unknown how can we calculate for $p \in(1,+\infty)$ the matrix norm subordinate to the vector norm $\|\cdot\|_{p}$ defined on l^{p}. For this paragraph see also [4].

The above presented vector and matrix spaces we used to extend the Jacobi's and Gauss-Seidel's methods, known like iterative numerical methods, from finite linear systems to infinite one [5], [6]. In this way we can study the linear stationary processes with infinite but countable number of parameters.

5 Gauss-Seidel's iterative method for infinite systems of linear equations

First let us remember the well known Banach fixed point theorem for Banach spaces:
Theorem 4. (Banach) Let $\left(X,\|\cdot\|_{X}\right)$ be a Banach space, and Φ a contraction (i.e. there exists a constant $\alpha \in(0,1)$ such that $\|\Phi(x)-\Phi(y)\|_{X} \leq \alpha \cdot\|x-y\|_{X}$ for every $x, y \in X)$. Then for every $x^{0} \in X$ the sequence $\left(x^{k}\right)_{k \in \mathbb{N}}$, generated by the recursion formula $x^{k+1}=\Phi\left(x^{k}\right)$, is convergent and has the limit point $x^{*} \in X$, which is the unique fixed point of the function Φ in X.

Let us consider the infinite system of linear equations $A x=b$, where $A \in M$ and $x, b \in s$.

Definition 2. For a given $A \in M$ and $b \in s$ we will say that $x^{*} \in s$ is a solution of the infinite system of linear equations $A x=b$ if we have $A x^{*}=b$.

This means, that all the series $\sum_{j=0}^{\infty} a_{i j} x_{j}^{*}$ are convergent and we have $\sum_{j=0}^{\infty} a_{i j} x_{j}^{*}=b_{i}$ for every $i \in \mathbb{N}$.

Let us suppose, that $a_{i i} \neq 0$ for every $i \in \mathbb{N}$. Then the equation $\sum_{j=0}^{\infty} a_{i j} x_{j}=b_{i}$ is equivalent with the equation

$$
\begin{gathered}
b_{i}-\sum_{\substack{j=0 \\
j \neq i}}^{\infty} a_{i j} x_{j} \\
x_{i}=\frac{a_{i i}}{a_{i i}}, \quad \text { i.e. } \\
x_{i}=-\sum_{\substack{j=0 \\
j \neq i}}^{\infty} \frac{a_{i j}}{a_{i i}} x_{j}+\frac{b_{i}}{a_{i i}} .
\end{gathered}
$$

So the initial system of linear equations $A x=b$ is equivalent with the following iterative system of linear equations: $x=B \cdot x+c$, where

$$
B=\left(\begin{array}{ccccc}
0 & -\frac{a_{01}}{a_{00}} & \cdots & -\frac{a_{0 n}}{a_{00}} & \cdots \\
-\frac{a_{10}}{a_{11}} & 0 & \ldots & -\frac{a_{1 n}}{a_{11}} & \cdots \\
\vdots & \vdots & & \vdots & \\
-\frac{a_{n 0}}{a_{n n}} & -\frac{a_{n 1}}{a_{n n}} & \cdots & 0 & \cdots \\
\vdots & \vdots & & \vdots &
\end{array}\right) \quad \text { and } \quad c=\left(\begin{array}{c}
\frac{b_{0}}{a_{00}} \\
\frac{b_{1}}{a_{11}} \\
\vdots \\
\frac{b_{n}}{a_{n n}} \\
\vdots
\end{array}\right) .
$$

Let us choose $x^{0} \in s$ and we generate the sequence $\left(x^{k}\right)_{k \in \mathbb{N}} \subset s$ by the following iterative formula:

$$
\left\{\begin{aligned}
& x_{0}^{k+1}=-\sum_{j=1}^{\infty} \frac{a_{0 j}}{a_{00}} x_{j}^{k}+\frac{b_{0}}{a_{00}} \\
& x_{1}^{k+1}=-\frac{a_{10}}{a_{11}} x_{0}^{k+1}-\sum_{j=2}^{\infty} \frac{a_{1 j}}{a_{11}} x_{j}^{k}+\frac{b_{1}}{a_{11}} \\
& x_{2}^{k+1}=-\frac{a_{20}}{a_{22}} x_{0}^{k+1}-\frac{a_{21}}{a_{22}} x_{1}^{k+1}-\sum_{j=3}^{\infty} \frac{a_{2 j}}{a_{22}} x_{j}^{k}+\frac{b_{2}}{a_{22}} \\
& \vdots \\
& x_{i}^{k+1}=-\sum_{j=0}^{i-1} \frac{a_{i j}}{a_{i i}} x_{j}^{k+1}-\sum_{j=i+1}^{\infty} \frac{a_{i j}}{a_{i i}} x_{j}^{k}+\frac{b_{i}}{a_{i i}} \\
& \vdots
\end{aligned}\right.
$$

Consequently from the vector x^{k} we generate the vector x^{k+1} by the recursion formula $x^{k+1}=B_{G S} x^{k}+c$. Now we consider the following definition:

Definition 3. The matrix $A=\left(a_{i j}\right)_{i, j \in \mathbb{N}}$ is l^{∞} diagonal dominant if there exists $\lambda \in(0,1)$ such that for every $i \in \mathbb{N}$ we have

$$
\lambda \cdot\left|a_{i i}\right|>\sum_{\substack{j=0 \\ j \neq i}}^{\infty}\left|a_{i j}\right| .
$$

It is immediately that A is l^{∞} diagonal dominant if and only if

$$
\sup _{\substack{i \in \mathbb{N}}} \sum_{\substack{j=0 \\ j \neq i}}^{\infty}\left|\frac{a_{i j}}{a_{i i}}\right|<1
$$

Theorem 5. If A is l^{∞} diagonal dominant then the iterative sequence $\left(x^{k}\right)_{k \in \mathbb{N}}$ is convergent in l^{∞} for every $x^{0} \in l^{\infty}$. The limit point $x^{*} \in l^{\infty}$ is the unique solution of the linear system $A x=b$.

For this result see also [6].
Here we present another proof for theorem 5.
Proof. Let us denote by $\lambda=\sup _{i \in \mathbb{N}} \sum_{\substack{j=0 \\ j \neq i}}^{\infty}\left|\frac{a_{i j}}{a_{i i}}\right|<1$. We prove by mathematical induction method that $\left|y_{k}\right| \leq \lambda \cdot\|x\|_{\infty}$ for every $k \in \mathbb{N}$, where $y=B_{G S} \cdot x$. Indeed,

$$
\begin{aligned}
\left|y_{0}\right| & =\left|-\sum_{j=1}^{\infty} \frac{a_{0 j}}{a_{00}} \cdot x_{j}\right| \leq \sum_{j=1}^{\infty}\left|\frac{a_{0 j}}{a_{00}}\right| \cdot\left|x_{j}\right| \leq \\
& \leq \sum_{j=1}^{\infty}\left|\frac{a_{0 j}}{a_{00}}\right| \cdot\|x\|_{\infty}=\left(\sum_{j=1}^{\infty}\left|\frac{a_{0 j}}{a_{00}}\right|\right) \cdot\|x\|_{\infty} \leq \lambda \cdot\|x\|_{\infty} .
\end{aligned}
$$

We suppose that $\left|y_{j}\right| \leq \lambda\|x\|_{\infty}$ for every $j=\overline{0, k-1}$ and we prove that $\left|y_{k}\right| \leq$
$\lambda \cdot\|x\|_{\infty}$. Indeed,

$$
\begin{aligned}
\left|y_{k}\right| & =\left|-\sum_{j=0}^{k-1} \frac{a_{k j}}{a_{k k}} \cdot y_{j}-\sum_{j=k+1}^{\infty} \frac{a_{k j}}{a_{k k}} \cdot x_{j}\right| \leq \\
& \leq \sum_{j=0}^{k-1}\left|\frac{a_{k j}}{a_{k k}}\right| \cdot\left|y_{j}\right|+\sum_{j=k+1}^{\infty}\left|\frac{a_{k j}}{a_{k k}}\right| \cdot\left|x_{j}\right| \leq \\
& \leq \sum_{j=0}^{k-1}\left|\frac{a_{k j}}{a_{k k}}\right| \cdot \lambda \cdot\|x\|_{\infty}+\sum_{j=k+1}^{\infty}\left|\frac{a_{k j}}{a_{k k}}\right| \cdot\|x\|_{\infty}= \\
& =\left(\sum_{j=0}^{k-1}\left|\frac{a_{k j}}{a_{k k}}\right| \cdot \lambda+\sum_{j=k+1}^{\infty}\left|\frac{a_{k j}}{a_{k k}}\right|\right) \cdot\|x\|_{\infty} \leq \\
& \leq\left(\sum_{j=0}^{k-1}\left|\frac{a_{k j}}{a_{k k}}\right|+\sum_{j=k+1}^{\infty}\left|\frac{a_{k j}}{a_{k k}}\right|\right) \cdot\|x\|_{\infty} \leq \lambda \cdot\|x\|_{\infty},
\end{aligned}
$$

because $\sum_{\substack{j=0 \\ j \neq k}}^{\infty}\left|\frac{a_{k j}}{a_{k k}}\right| \leq \lambda<1$. Since $\left|y_{k}\right| \leq \lambda \cdot\|x\|_{\infty}$ for every $k \in \mathbb{N}$ results that

$$
\|y\|_{\infty}=\sup _{k \in \mathbb{N}}\left\{\left|y_{k}\right|\right\} \leq \lambda \cdot\|x\|_{\infty}
$$

This means that

$$
\left\|B_{G S}\right\|_{\infty}=\sup _{x \neq \theta_{l} \infty} \frac{\left\|B_{G S} x\right\|_{\infty}}{\|x\|_{\infty}}=\sup _{x \neq \theta_{l} \infty} \frac{\|y\|_{\infty}}{\|x\|_{\infty}} \leq \lambda<1
$$

Now we can apply the Banach fixed point theorem for the iterative function $\Phi: l^{\infty} \rightarrow l^{\infty}, \Phi(x)=B_{G S} x+c$. Indeed, Φ is a contraction, because
$\|\Phi(x)-\Phi(y)\|_{\infty}=\left\|\left(B_{G S} x+c\right)-\left(B_{G S} y+c\right)\right\|_{\infty}=\left\|B_{G S}(x-y)\right\|_{\infty} \leq\left\|B_{G S}\right\|_{\infty} \cdot\|x-y\|_{\infty}$.
This means that the sequence $\left(x^{k}\right)_{k \in \mathbb{N}}$ is convergent in l^{∞} for every $x^{0} \in l^{\infty}$ and its limit point $x^{*} \in l^{\infty}$ is the unique fixed point of Φ in l^{∞}, i.e. $\Phi\left(x^{*}\right)=x^{*}$. So $B_{G S} x^{*}+c=x^{*}$, which is equivalent with $A x^{*}=b$.

Corollary 4. If for the matrix $A=\left(a_{i j}\right)_{i, j \in \mathbb{N}}$ we have $a_{i j}=0$ when $i>n, j>n$, and $b_{i}=0$ for $i>n, n \in \mathbb{N}$, then we reobtain the linear system with finite number of equations and finite number of unknowns. In this way from theorem 5 we obtain the classical Gauss-Seidel's iterative numerical method to solve finite systems of linear equations [2].

In the next we consider the following definition:

Definition 4. The matrix $A=\left(a_{i j}\right)_{i, j \in \mathbb{N}}$ is l^{1} diagonal dominant if there exists $\lambda \in\left(0, \frac{1}{2}\right)$ such that for every $j \in \mathbb{N}$ we have $\lambda \cdot\left|a_{j j}\right|>\sum_{\substack{i=0 \\ i \neq j}}^{\infty}\left|a_{i j}\right|$.

It is immediately that A is l^{1} diagonal dominant if and only if $\sup _{j \in \mathbb{N}} \sum_{\substack{i=0 \\ i \neq j}}^{\infty}\left|\frac{a_{i j}}{a_{j j}}\right|<\frac{1}{2}$.
Theorem 6. If A is l^{1} diagonal dominant then the iterative sequence $\left(x^{k}\right)_{k \in \mathbb{N}}$ is convergent in l^{1} for every $x^{0} \in l^{1}$. The limit point $x^{*} \in l^{1}$ is the unique solution of the linear system $A x=b$.

Proof. We have:

$$
\begin{aligned}
\|y\|_{1} & =\sum_{i=0}^{\infty}\left|y_{i}\right|=\sum_{i=0}^{\infty}\left|-\sum_{j=0}^{i-1} \frac{a_{i j}}{a_{i i}} \cdot y_{j}-\sum_{j=i+1}^{\infty} \frac{a_{i j}}{a_{i i}} \cdot x_{j}\right| \leq \\
& \leq \sum_{i=0}^{\infty}\left(\sum_{j=0}^{i-1}\left|\frac{a_{i j}}{a_{i i}}\right| \cdot\left|y_{j}\right|+\sum_{j=i+1}^{\infty}\left|\frac{a_{i j}}{a_{i i}}\right| \cdot\left|x_{j}\right|\right) \leq \\
& \leq \sum_{j=0}^{\infty}\left(\sum_{i=0}^{j-1}\left|\frac{a_{i j}}{a_{j j}}\right| \cdot\left|x_{j}\right|+\sum_{i=j+1}^{\infty}\left|\frac{a_{i j}}{a_{j j}}\right| \cdot\left|y_{j}\right|\right) \leq \\
& \leq \sum_{j=0}^{\infty}\left[\left(\sum_{i=0}^{j-1}\left|\frac{a_{i j}}{a_{j j}}\right|\right) \cdot\left|x_{j}\right|+\left(\sum_{i=j+1}^{\infty}\left|\frac{a_{i j}}{a_{j j}}\right|\right) \cdot\left|y_{j}\right|\right] \leq \\
& \leq \sum_{j=0}^{\infty}\left(\lambda \cdot\left|x_{j}\right|+\lambda \cdot\left|y_{j}\right|\right)=\lambda \cdot\|x\|_{1}+\lambda \cdot\|y\|_{1} .
\end{aligned}
$$

Consequently: $\|y\|_{1} \leq \lambda \cdot\|x\|_{1}+\lambda \cdot\|y\|_{1}$, which is equivalent with: $\frac{\|y\|_{1}}{\|x\|_{1}} \leq \frac{\lambda}{1-\lambda}<1$.
This means that:

$$
\left\|B_{G S}\right\|_{1}=\sup _{x \neq \theta_{l^{1}}} \frac{\left\|B_{G S} x\right\|_{1}}{\|x\|_{1}}=\sup _{x \neq \theta_{l^{1}}} \frac{\|y\|_{1}}{\|x\|_{1}} \leq \frac{\lambda}{1-\lambda}<1 .
$$

Now we can apply the Banach fixed point theorem for the iterative function Φ : $l^{1} \rightarrow l^{1}, \Phi(x)=B_{G S} x+c$. Indeed, Φ is a contraction, because: $\|\Phi(x)-\Phi(y)\|_{1}=$ $\left\|\left(B_{G S} x+c\right)-\left(B_{G S} y+c\right)\right\|_{1}=\left\|B_{G S}(x-y)\right\|_{1} \leq\left\|B_{G S}\right\|_{1} \cdot\|x-y\|_{1}$. This means that the sequence $\left(x^{k}\right)_{k \in \mathbb{N}}$ is convergent in l^{1} for every $x^{0} \in l^{1}$ and its limit point $x^{*} \in l^{1}$ is the unique fixed point of Φ in l^{1}, i.e. $\Phi\left(x^{*}\right)=x^{*}$. So $B_{G S} x^{*}+c=x^{*}$, which is equivalent with $A x^{*}=b$.

Corollary 5. If for the matrix $A=\left(a_{i j}\right)_{i, j \in \mathbb{N}}$ we have $a_{i j}=0$ when $i>n, j>n$, and $b_{i}=0$ for $i>n, n \in \mathbb{N}$, then we reobtain the linear system with finite number of
equations and finite number of unknowns. In this way from theorem 6 we obtain the classical Gauss-Seidel's iterative numerical method to solve finite systems of linear equations [2].

We mention that for the author is unknown if theorem 6 is true with definition 4 choosing $\lambda \in\left[\frac{1}{2}, 1\right)$.

Using the above presented theorems we can study the linear stationary processes with infinite but countable number of parameters.

References

[1] L. Kantorovitch, G. Akilov, Analyse fonctionnelle, Éditions MIR, Moscou, 1981.
[2] F. Szidarovszky, S. Yakowitz, Principles and Procedures of Numerical Analysis, Plenum Press, New York and London, 1978.
[3] B. Finta, A Remark about Vector and Operator Norms, Mathematical Magazine Octogon, Vol. 6, No. 1, April, 1998, pag. 58-60, Braşov.
[4] B. Finta, A Remark about Vector and Matrix Norms (II), Buletin Ştiinţific, vol. XV-XVI, Universitatea "Petru Maior", Tg. Mureş, 2002-2003, pag. 113-120.
[5] B. Finta, Jacobi's Theorem for Infinite System of Linear Equations, Profesor Gheorghe Fărcaş la vârsta de 70 de ani, Volum omagial, Editura Universităţii "Petru Maior" Tg. Mureş, 2004, pag. 103-108.
[6] B. Finta, Gauss-Seidel's Theorem for Infinite System of Linear Equations, Buletin Ştiinţific, vol. XVII, Universitatea "Petru Maior", Tg. Mureş, 2004, pag. 287-294.

Béla Finta
Department of Mathematics, "Petru Maior" University Tg.Mureş, str. Nicolae Iorga nr.1, 540088, Romania, e-mail: fintab@upm.ro

