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The purpose of this paper is to extend the classical Gauss-Seidel theorem, known

for finite linear systems, to infinite one. First of all we need some technical results

[4].

1 Vector norms

Let x =




x0

x1

...

xn

...




be a sequence of real numbers represented in the form of an

infinite column vector, and we denote by s the real linear space of these sequences.

Let p ∈ [1, +∞) be a real number and define lp = {x ∈ s |
∞∑
i=0

|xi|p is convergent}.
It is well known that lp is a real linear subspace of s and for every x ∈ lp the formula

‖x‖p =

( ∞∑
i=0

|xi|p
)1/p

defines a norm on lp. In this way (lp, ‖ · ‖p) is not only a

normed linear space, but a Banach space, too. For p = 1 and p = 2 we reobtain

the Banach space l1 and the Hilbert space l2, respectively. In l2 we will consider the

standard scalar product given by the formula (x, y) =
∞∑
i=0

xiyi for every x, y ∈ l2.

For p, q ∈ [1, +∞) real numbers from p < q results lp ⊂ lq. If s0 means the linear

subspace of convergent sequences to zero then lp ⊂ s0 for every p ∈ [1, +∞). We

also consider the linear subspace l∞ = {x ∈ s | x is bounded}. For every x ∈ l∞ the

formula ‖x‖∞ = sup
i∈N
{|xi|} defines a norm on l∞. In this way (l∞, ‖·‖∞) is not only a

normed linear space, but a Banach space, too. We have: l1 ⊂ l2 ⊂ s0 ⊂ l∞ ⊂ s. All
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these spaces we will call vector spaces, the elements vectors and the above mentioned

norms vector norms [1]. For this paragraph see also [4].

2 Matrix norms

Let A = (aij)i,j∈N be an infinite matrix of real numbers and we denote by M the

real linear space of these infinite matrixes. Let M1 =

{
A ∈ M | sup

j∈N

∞∑
i=0

|aij|

is finite}. Then M1 is a real linear subspace of M and for every A ∈ M1 the

formula ‖A‖1 = sup
j∈N

∞∑
i=0

|aij| defines a norm on M1 called column norm. In this way

(M1, ‖ · ‖1) becomes not only a real linear normed space, but a Banach space, too.

Let p ∈ (1, +∞) be a real number and define

Mp =



A ∈ M |

∞∑
i=0

( ∞∑
j=0

|aij|q
) p

q

is finite



 ,

where q is a real number such that
1

p
+

1

q
= 1.

Theorem 1. The space Mp is a real linear subspace of M and for every A ∈ Mp

the formula

‖A‖p =




∞∑
i=0

( ∞∑
j=0

|aij|q
) p

q




1
p

defines a norm on Mp. The space (Mp, ‖ · ‖p) is a Banach space.

For p = 2 we obtain M2 =

{
A ∈ M |

∞∑
i,j=0

a2
ij is finite}. If we take on M2 the

scalar product given by the formula (A, B) =
∞∑

i,j=0

aijbij, where A = (aij)i,j∈N and

B = (bij)i,j∈N, then (M2, (·, ·)) will be a Hilbert space.

Let M∞ = {A ∈ M | sup
i∈N

∞∑
j=0

|aij| is finite}. Then M∞ is a real linear subspace

of M and for every A ∈ M∞ the formula ‖A‖∞ = sup
i∈N

∞∑
j=0

|aij| defines a norm on

M∞, called row norm. In this way (M∞, ‖ · ‖∞) becomes not only a normed linear

space, but a Banach space, too.
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Corollary 1. If for the matrix A = (aij)i,j∈N we have aij = 0 for i > n and j > n,

n ∈ N, then from theorem 1 we reobtain the results in the finite dimensional space

Rn [3].

All these spaces we will call matrix spaces and the above mentioned norms matrix

norms. For this paragraph see also [4].

3 The compatibility of the vector and matrix norms

Let x ∈ s be a sequence of real numbers, and A = (aij)i,j∈N ∈ M an infinite matrix

of real numbers.

Definition 1. We will define the product A ·x if for every i ∈ N the series
∞∑

j=0

aijxj

are convergent. In this case the result vector y = A · x is a column vector with

components y =




∞∑
j=0

a0jxj

∞∑
j=0

a1jxj

...
∞∑

j=0

aijxj

...




Theorem 2. For every p ∈ [1, +∞] = [1, +∞)∪{+∞} the vector norm ‖·‖p defined

on lp is compatible with the matrix norm ‖·‖p defined on Mp, i.e. ‖Ax‖p ≤ ‖A‖p·‖x‖p

for every x ∈ lp and every A ∈ Mp.

Corollary 2. If for the matrix A = (aij)i,j∈N we have aij = 0 for i > n and j > n,

n ∈ N, then from theorem 2 we reobtain the results in the finite dimensional space

Rn [3].

For this paragraph see also [4].

4 The matrix norm subordinate to a given vector

norm

For every p ∈ [1, +∞] and for every x ∈ lp and A ∈ Mp we have ‖Ax‖p ≤ ‖A‖p ·
‖x‖p according to theorem 2. If x 6= θlp (the null element of the vector space lp)
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then
‖Ax‖p

‖x‖p

≤ ‖A‖p and we can define sup

{‖Ax‖p

‖x‖p

| x ∈ lp \ {θlp}
}

. It is known

that this formula defines a matrix norm on Mp, which we call the matrix norm

subordinate to the vector norm ‖ · ‖p defined on lp and we denote by ‖A‖∗p =

sup

{‖Ax‖p

‖x‖p

| x ∈ lp \ {θlp}
}

. It is immediately that ‖A‖∗p ≤ ‖A‖p for every A ∈
Mp.

Theorem 3. For p ∈ {1, +∞} we have ‖A‖∗p = ‖A‖p.

Corollary 3. If for the matrix A = (aij)i,j∈N we have aij = 0 for i > n and j > n,

n ∈ N, then from theorem 3 we reobtain the results in the finite dimensional space

Rn [3].

We mention that for the author is unknown how can we calculate for p ∈ (1, +∞)

the matrix norm subordinate to the vector norm ‖ · ‖p defined on lp. For this para-

graph see also [4].

The above presented vector and matrix spaces we used to extend the Jacobi’s

and Gauss-Seidel’s methods, known like iterative numerical methods, from finite

linear systems to infinite one [5], [6]. In this way we can study the linear stationary

processes with infinite but countable number of parameters.

5 Gauss-Seidel’s iterative method for infinite sys-

tems of linear equations

First let us remember the well known Banach fixed point theorem for Banach spaces:

Theorem 4. (Banach) Let (X, ‖ · ‖X) be a Banach space, and Φ a contraction (i.e.

there exists a constant α ∈ (0, 1) such that ‖Φ(x)−Φ(y)‖X ≤ α · ‖x− y‖X for every

x, y ∈ X). Then for every x0 ∈ X the sequence (xk)k∈N, generated by the recursion

formula xk+1 = Φ(xk), is convergent and has the limit point x∗ ∈ X, which is the

unique fixed point of the function Φ in X.

Let us consider the infinite system of linear equations Ax = b, where A ∈ M and

x, b ∈ s.

Definition 2. For a given A ∈ M and b ∈ s we will say that x∗ ∈ s is a solution of

the infinite system of linear equations Ax = b if we have Ax∗ = b.
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This means, that all the series
∞∑

j=0

aijx
∗
j are convergent and we have

∞∑
j=0

aijx
∗
j = bi

for every i ∈ N.

Let us suppose, that aii 6= 0 for every i ∈ N. Then the equation
∞∑

j=0

aijxj = bi is

equivalent with the equation

xi =

bi −
∞∑

j=0
j 6=i

aijxj

aii

, i.e.

xi = −
∞∑

j=0
j 6=i

aij

aii

xj +
bi

aii

.

So the initial system of linear equations Ax = b is equivalent with the following

iterative system of linear equations: x = B · x + c, where

B =




0 −a01

a00

. . . −a0n

a00

. . .

−a10

a11

0 . . . −a1n

a11

. . .

...
...

...

−an0

ann

−an1

ann

. . . 0 . . .

...
...

...




and c =




b0

a00

b1

a11

...
bn

ann
...




.

Let us choose x0 ∈ s and we generate the sequence (xk)k∈N ⊂ s by the following

iterative formula:



xk+1
0 = −

∞∑
j=1

a0j

a00

xk
j +

b0

a00

xk+1
1 = −a10

a11

xk+1
0 −

∞∑
j=2

a1j

a11

xk
j +

b1

a11

xk+1
2 = −a20

a22

xk+1
0 − a21

a22

xk+1
1 −

∞∑
j=3

a2j

a22

xk
j +

b2

a22

...

xk+1
i = −

i−1∑
j=0

aij

aii

xk+1
j −

∞∑
j=i+1

aij

aii

xk
j +

bi

aii

...
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Consequently from the vector xk we generate the vector xk+1 by the recursion

formula xk+1 = BGSxk + c. Now we consider the following definition:

Definition 3. The matrix A = (aij)i,j∈N is l∞ diagonal dominant if there exists

λ ∈ (0, 1) such that for every i ∈ N we have

λ · |aii| >
∞∑

j=0
j 6=i

|aij|.

It is immediately that A is l∞ diagonal dominant if and only if

sup
i∈N

∞∑
j=0
j 6=i

∣∣∣∣
aij

aii

∣∣∣∣ < 1.

Theorem 5. If A is l∞ diagonal dominant then the iterative sequence (xk)k∈N is

convergent in l∞ for every x0 ∈ l∞. The limit point x∗ ∈ l∞ is the unique solution

of the linear system Ax = b.

For this result see also [6].

Here we present another proof for theorem 5.

Proof. Let us denote by λ = sup
i∈N

∞∑
j=0
j 6=i

∣∣∣∣
aij

aii

∣∣∣∣ < 1. We prove by mathematical induction

method that |yk| ≤ λ · ‖x‖∞ for every k ∈ N, where y = BGS · x. Indeed,

|y0| =

∣∣∣∣∣−
∞∑

j=1

a0j

a00

· xj

∣∣∣∣∣ ≤
∞∑

j=1

∣∣∣∣
a0j

a00

∣∣∣∣ · |xj| ≤

≤
∞∑

j=1

∣∣∣∣
a0j

a00

∣∣∣∣ · ‖x‖∞ =

( ∞∑
j=1

∣∣∣∣
a0j

a00

∣∣∣∣
)
· ‖x‖∞ ≤ λ · ‖x‖∞.

We suppose that |yj| ≤ λ‖x‖∞ for every j = 0, k − 1 and we prove that |yk| ≤
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λ · ‖x‖∞. Indeed,

|yk| =

∣∣∣∣∣−
k−1∑
j=0

akj

akk

· yj −
∞∑

j=k+1

akj

akk

· xj

∣∣∣∣∣ ≤

≤
k−1∑
j=0

∣∣∣∣
akj

akk

∣∣∣∣ · |yj|+
∞∑

j=k+1

∣∣∣∣
akj

akk

∣∣∣∣ · |xj| ≤

≤
k−1∑
j=0

∣∣∣∣
akj

akk

∣∣∣∣ · λ · ‖x‖∞ +
∞∑

j=k+1

∣∣∣∣
akj

akk

∣∣∣∣ · ‖x‖∞ =

=

(
k−1∑
j=0

∣∣∣∣
akj

akk

∣∣∣∣ · λ +
∞∑

j=k+1

∣∣∣∣
akj

akk

∣∣∣∣
)
· ‖x‖∞ ≤

≤
(

k−1∑
j=0

∣∣∣∣
akj

akk

∣∣∣∣ +
∞∑

j=k+1

∣∣∣∣
akj

akk

∣∣∣∣
)
· ‖x‖∞ ≤ λ · ‖x‖∞,

because
∑∞

j=0
j 6=k

∣∣∣ akj

akk

∣∣∣ ≤ λ < 1. Since |yk| ≤ λ · ‖x‖∞ for every k ∈ N results that

‖y‖∞ = sup
k∈N

{|yk|} ≤ λ · ‖x‖∞.

This means that

‖BGS‖∞ = sup
x 6=θl∞

‖BGSx‖∞
‖x‖∞ = sup

x 6=θl∞

‖y‖∞
‖x‖∞ ≤ λ < 1.

Now we can apply the Banach fixed point theorem for the iterative function

Φ : l∞ → l∞, Φ(x) = BGSx + c. Indeed, Φ is a contraction, because

‖Φ(x)−Φ(y)‖∞ = ‖(BGSx+c)−(BGSy+c)‖∞ = ‖BGS(x−y)‖∞ ≤ ‖BGS‖∞·‖x−y‖∞.

This means that the sequence (xk)k∈N is convergent in l∞ for every x0 ∈ l∞ and

its limit point x∗ ∈ l∞ is the unique fixed point of Φ in l∞, i.e. Φ(x∗) = x∗. So

BGSx∗ + c = x∗, which is equivalent with Ax∗ = b.

Corollary 4. If for the matrix A = (aij)i,j∈N we have aij = 0 when i > n, j > n,

and bi = 0 for i > n, n ∈ N, then we reobtain the linear system with finite number of

equations and finite number of unknowns. In this way from theorem 5 we obtain the

classical Gauss-Seidel’s iterative numerical method to solve finite systems of linear

equations [2].

In the next we consider the following definition:
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Definition 4. The matrix A = (aij)i,j∈N is l1 diagonal dominant if there exists

λ ∈ (
0, 1

2

)
such that for every j ∈ N we have λ · |ajj| >

∞∑
i=0
i6=j

|aij|.

It is immediately that A is l1 diagonal dominant if and only if supj∈N
∑∞

i=0
i 6=j

∣∣∣ aij

ajj

∣∣∣ < 1
2
.

Theorem 6. If A is l1 diagonal dominant then the iterative sequence (xk)k∈N is

convergent in l1 for every x0 ∈ l1. The limit point x∗ ∈ l1 is the unique solution of

the linear system Ax = b.

Proof. We have:

‖y‖1 =
∞∑
i=0

|yi| =
∞∑
i=0

∣∣∣∣∣−
i−1∑
j=0

aij

aii

· yj −
∞∑

j=i+1

aij

aii

· xj

∣∣∣∣∣ ≤

≤
∞∑
i=0

(
i−1∑
j=0

∣∣∣∣
aij

aii

∣∣∣∣ · |yj|+
∞∑

j=i+1

∣∣∣∣
aij

aii

∣∣∣∣ · |xj|
)
≤

≤
∞∑

j=0

(
j−1∑
i=0

∣∣∣∣
aij

ajj

∣∣∣∣ · |xj|+
∞∑

i=j+1

∣∣∣∣
aij

ajj

∣∣∣∣ · |yj|
)
≤

≤
∞∑

j=0

[(
j−1∑
i=0

∣∣∣∣
aij

ajj

∣∣∣∣
)
· |xj|+

( ∞∑
i=j+1

∣∣∣∣
aij

ajj

∣∣∣∣
)
· |yj|

]
≤

≤
∞∑

j=0

(λ · |xj|+ λ · |yj|) = λ · ‖x‖1 + λ · ‖y‖1.

Consequently: ‖y‖1 ≤ λ · ‖x‖1 + λ · ‖y‖1, which is equivalent with: ‖y‖1
‖x‖1 ≤ λ

1−λ
< 1.

This means that:

‖BGS‖1 = sup
x6=θl1

‖BGSx‖1

‖x‖1

= sup
x 6=θl1

‖y‖1

‖x‖1

≤ λ

1− λ
< 1.

Now we can apply the Banach fixed point theorem for the iterative function Φ :

l1 → l1, Φ(x) = BGSx + c. Indeed, Φ is a contraction, because: ‖Φ(x) − Φ(y)‖1 =

‖(BGSx + c)− (BGSy + c)‖1 = ‖BGS(x− y)‖1 ≤ ‖BGS‖1 · ‖x− y‖1. This means that

the sequence (xk)k∈N is convergent in l1 for every x0 ∈ l1 and its limit point x∗ ∈ l1

is the unique fixed point of Φ in l1, i.e. Φ(x∗) = x∗. So BGSx∗ + c = x∗, which is

equivalent with Ax∗ = b.

Corollary 5. If for the matrix A = (aij)i,j∈N we have aij = 0 when i > n, j > n,

and bi = 0 for i > n, n ∈ N, then we reobtain the linear system with finite number of
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equations and finite number of unknowns. In this way from theorem 6 we obtain the

classical Gauss-Seidel’s iterative numerical method to solve finite systems of linear

equations [2].

We mention that for the author is unknown if theorem 6 is true with definition

4 choosing λ ∈ [
1
2
, 1

)
.

Using the above presented theorems we can study the linear stationary processes

with infinite but countable number of parameters.
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Gheorghe Fărcaş la vârsta de 70 de ani, Volum omagial, Editura Universităţii
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Buletin Ştiinţific, vol. XVII, Universitatea ”Petru Maior”, Tg. Mureş, 2004, pag.

287-294.
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